Analysis of Global LAI/FPAR Products from VIIRS and MODIS Sensors for Spatio-Temporal Consistency and Uncertainty from 2012–2016
نویسندگان
چکیده
The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) algorithm has been successfully implemented for Visible Infrared Imager Radiometer Suite (VIIRS) observations by optimizing a small set of configurable parameters in Look-Up-Tables (LUTs). Our preliminary evaluation showed reasonable agreement between VIIRS and MODIS LAI/FPAR retrievals. However, there is a need for a more comprehensive investigation to assure continuity of multi-sensor global LAI/FPAR time series, as the preliminary evaluation was spatiotemporally limited. In this study, we use a multi-year (2012–2016) global LAI/FPAR product generated from VIIRS and MODIS to evaluate for spatiotemporal consistency. We also quantify uncertainty of the product by utilizing available ground measurements. For both consistency and uncertainty evaluation, we account for variations in biome type and temporal resolution. Our results indicate that the LAI/FPAR retrievals from VIIRS and MODIS are consistent at different spatial (i.e., global and site) and temporal (i.e., 8-day, seasonal and annual) scales. The estimate of mean discrepancy (−0.006 ± 0.013 for LAI and −0.002 ± 0.002 for FPAR) meets the stability requirement for long-term LAI/FPAR Earth System Data Records (ESDRs) from multi-sensors as suggested by the Global Climate Observing System (GCOS). It is noteworthy that the rate of retrievals from the radiative transfer-based main algorithm is also comparable between two sensors. However, a relatively larger discrepancy over tropical forests was observed due to reflectance saturation and an unexpected interannual variation of main algorithm success was noticed due to instability in input surface reflectances. The uncertainties/relative uncertainties of VIIRS and MODIS LAI (FPAR) products assessed through comparisons to ground measurements are estimated to be 0.60/42.2% (0.10/24.4%) and 0.55/39.3% (0.11/26%), respectively. Note that the validated LAI were only distributed in low domains (~2.5), resulting in large relative uncertainty. Therefore, more ground measurements are needed to achieve a more comprehensive evaluation result of product uncertainty. The results presented here generally imbue confidence in the consistency between VIIRS and MODIS LAI/FPAR products and the feasibility of generating long-term multi-sensor LAI/FPAR ESDRs time series. Forests 2018, 9, 73; doi:10.3390/f9020073 www.mdpi.com/journal/forests Forests 2018, 9, 73 2 of 21
منابع مشابه
Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements
As the latest version of Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) products, Collection 6 (C6) has been distributed since August 2015. This collection is evaluated in this two-part series with the goal of assessing product accuracy, uncertainty and consistency with the previous version. In this first pa...
متن کاملEvaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison
The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product (MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three approaches: validation with field measurements, intercomparison with other LAI/FPAR products and comparison with climate variables. Comparisons between ground measurements and C6, as well as C5 LAI/FPAR indicate: (1) MOD...
متن کاملRetrieval of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from VIIRS Time-Series Data
Long-term high-quality global leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) products are urgently needed for the study of global change, climate modeling, and many other problems. As the successor of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) will continue to provide global ...
متن کاملAnalysis of the MISR LAI/FPAR product for spatial and temporal coverage, accuracy and consistency
The Multi-angle Imaging SpectroRadiometer (MISR) instrument provides global imagery at nine discrete viewing angles and four visible/nearinfrared spectral bands. MISR standard products include green leaf area index (LAI) of vegetation and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). This paper describes the research basis for transitioning the MISR LAI/FPAR pro...
متن کاملInvestigation of product accuracy as a function of input and model uncertainties Case study with SeaWiFS and MODIS LAI/FPAR algorithm
The derivation of vegetation leaf area index (LAI) and the fraction of photosynthetically active radiation (FPAR) absorbed by vegetation globally from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) multispectral surface reflectances using the algorithm developed for the moderate resolution imaging spectroradiometer (MODIS) instrument is discussed here, with special emphasis on the quality ...
متن کامل